
Model-checking lock-sharing systems with
tree automata

Corto Mascle, Anca Muscholl and Igor Walukiewicz

CONCUR 2023



Lock-sharing systems

Lock-sharing system [Kahlon, Ivancic, Gupta '05]

Proc: set of processes
Locks: set of locks.

Lock-sharing system (LSS):
Ap = (Sp,Σp, δp, initp) for each p ∈ Proc.

Transitions include operations on locks :
δp : Sp×Σp → OpT ×Sp with OpT = {acqt, relt | t ∈ T}∪{nop}.



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1 2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2



Locks vs Variables

With variables (and atomic read-write)
▷ Processes can synchronize completely.
▷ Verification is hard (PSPACE for finite-state)

With locks
▷ No way to test if a lock is taken → Lock < Boolean variable
▷ Variables can be simulated by interleaving lock acquisitions



Locks vs Variables

With variables (and atomic read-write)
▷ Processes can synchronize completely.
▷ Verification is hard (PSPACE for finite-state)

With locks
▷ No way to test if a lock is taken → Lock < Boolean variable

▷ Variables can be simulated by interleaving lock acquisitions



Locks vs Variables

With variables (and atomic read-write)
▷ Processes can synchronize completely.
▷ Verification is hard (PSPACE for finite-state)

With locks
▷ No way to test if a lock is taken → Lock < Boolean variable
▷ Variables can be simulated by interleaving lock acquisitions



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0 1

a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0 1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0 1

a

0

1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1

a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1 a

0 1

a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1 a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1 a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1 a

0

1

a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0 1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0 1

a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0 1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1

a

0

1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0 1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1

a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1

a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1

a

0 1

a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1 a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0

1 a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1 a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0 1

a

0

1

a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0

1 a



Passing information

· · ·

acq0

acq1

rela acq1 rel0 acqa rel1 p

0 1

a

0 1 a

· · ·

rel0

rel1

acqa rel1 acq0 rela acq1
C

0 1

a



Nested locking

All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.

Now we cannot simulate variables!



Dynamic LSS

▷ We want to allow an unbounded amount of processes and
locks.

▷ Processes will now be able to spawn other processes

▷ A process now takes parameters, represented by lock variables

Proc = {P (ℓ1, ℓ2), Q(ℓ1, ℓ2, ℓ3), R(), ...}



Dynamic LSS

▷ We want to allow an unbounded amount of processes and
locks.

▷ Processes will now be able to spawn other processes

▷ A process now takes parameters, represented by lock variables

Proc = {P (ℓ1, ℓ2), Q(ℓ1, ℓ2, ℓ3), R(), ...}



Dynamic LSS

▷ We want to allow an unbounded amount of processes and
locks.

▷ Processes will now be able to spawn other processes

▷ A process now takes parameters, represented by lock variables

Proc = {P (ℓ1, ℓ2), Q(ℓ1, ℓ2, ℓ3), R(), ...}



Dynamic LSS

Locks :

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live

spawn : P (new, ℓ1)spawn : P (new, ℓ1)

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)



Dynamic LSS

Locks :

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)

spawn : P (new, ℓ1)

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)



Dynamic LSS

Locks :

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)

spawn : P (new, ℓ1)

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)



Dynamic LSS

Locks :

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live

spawn : P (new, ℓ1)

spawn : P (new, ℓ1)

P (ℓ1, ℓ2)

acqℓ2 acqℓ1

acqℓ1 relℓ1 live
spawn : P (new, ℓ1)



Tree representation

We represent finite or infinite runs by trees

acqℓ1

spawn : P (new, ℓ1) [ℓ1 → new, ℓ2 → ℓ1]

relℓ1 acqℓ2



Tree representation

We represent finite or infinite runs by trees

acqℓ1

spawn : P (new, ℓ1) [ℓ1 → new, ℓ2 → ℓ1]

relℓ1 acqℓ2



Tree representation

We represent finite or infinite runs by trees

acqℓ1

spawn : P (new, ℓ1) [ℓ1 → new, ℓ2 → ℓ1]

relℓ1 acqℓ2



Tree representation

We represent finite or infinite runs by trees

acqℓ1

spawn : P (new, ℓ1) [ℓ1 → new, ℓ2 → ℓ1]

relℓ1

acqℓ2



Tree representation

We represent finite or infinite runs by trees

acqℓ1

spawn : P (new, ℓ1) [ℓ1 → new, ℓ2 → ℓ1]

relℓ1 acqℓ2



Tree specifications

We assume runs to be fair: If a process can execute a step
infinitely many times, it eventually does.
Deadlock ⇔ finite tree.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree

▶ G ℓi → never released
▶ EFG ℓi → taken at some point and never released
▶ AFG ¬ℓi → held finitely many times
▶ AGF ¬ℓi → always released but may be taken infinitely

many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree
▶ G ℓi → never released

▶ EFG ℓi → taken at some point and never released
▶ AFG ¬ℓi → held finitely many times
▶ AGF ¬ℓi → always released but may be taken infinitely

many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree
▶ G ℓi → never released
▶ EFG ℓi → taken at some point and never released

▶ AFG ¬ℓi → held finitely many times
▶ AGF ¬ℓi → always released but may be taken infinitely

many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree
▶ G ℓi → never released
▶ EFG ℓi → taken at some point and never released
▶ AFG ¬ℓi → held finitely many times

▶ AGF ¬ℓi → always released but may be taken infinitely
many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree
▶ G ℓi → never released
▶ EFG ℓi → taken at some point and never released
▶ AFG ¬ℓi → held finitely many times
▶ AGF ¬ℓi → always released but may be taken infinitely

many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Labels

We label each node of the tree with the asymptotic behaviour of
the locks associated with its variables in the subtree.
▶ AG ¬ℓi → never taken in the subtree
▶ G ℓi → never released
▶ EFG ℓi → taken at some point and never released
▶ AFG ¬ℓi → held finitely many times
▶ AGF ¬ℓi → always released but may be taken infinitely

many times

Lemma
Consistency of those labels can be checked by an exponential
Büchi automaton.



Order on locks

We also label nodes with local orders.
ℓ1 ⪯ ℓ2 if ℓ2 is taken after ℓ1 was taken and never released.

Lemma
A tree is schedulable if it can be enriched with consistent labels
and consistent acyclic local orders.



Result

Lemma
There exists an exponential Büchi tree automaton recognising
realizable run trees of DLSS.
It is polynomial if the number of locks is fixed.

Theorem
Model-checking DLSS against regular tree specifications is
EXPTIME-complete.



Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a
right child.

Lemma
Emptiness is Fixed-parameter tractable for right-resetting
parity pushdown tree automata.

Theorem
Model-checking pushdown DLSS against regular tree
specifications is EXPTIME-complete.



Future work

Add variables ?

→ Easy VASS encoding

→ Find good restrictions on variables to make the problem
more tractable.



Thank you for your attention!


