Model-checking lock-sharing systems with tree automata

Corto Mascle, Anca Muscholl and Igor Walukiewicz

CONCUR 2023

Lock-sharing systems

Lock-sharing system [Kahlon, Ivancic, Gupta '05]

Proc: set of processes *Locks*: set of locks.

Lock-sharing system (LSS): $\mathcal{A}_p = (S_p, \Sigma_p, \delta_p, init_p)$ for each $p \in Proc$.

Transitions include operations on locks : $\delta_p: S_p \times \Sigma_p \to Op_T \times S_p$ with $Op_T = \{acq_t, rel_t \mid t \in T\} \cup \{nop\}.$

1 2

2

2

0

With variables (and atomic read-write)

- ▷ Processes can synchronize completely.
- > Verification is hard (PSPACE for finite-state)

With variables (and atomic read-write)

- ▷ Processes can synchronize completely.
- Verification is hard (PSPACE for finite-state)

With locks

 \triangleright No way to test if a lock is taken \rightarrow Lock < Boolean variable

With variables (and atomic read-write)

- ▷ Processes can synchronize completely.
- > Verification is hard (PSPACE for finite-state)

With locks

 \triangleright No way to test if a lock is taken \rightarrow Lock < Boolean variable

▷ Variables can be simulated by interleaving lock acquisitions

 \mathtt{rel}_1

Nested locking

All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.

Now we cannot simulate variables!

\triangleright We want to allow an unbounded amount of processes and locks.

\triangleright We want to allow an unbounded amount of processes and locks.

▷ Processes will now be able to spawn other processes

 \triangleright We want to allow an unbounded amount of processes and locks.

> Processes will now be able to spawn other processes

> A process now takes parameters, represented by lock variables

 $Proc = \{ P(\ell_1, \ell_2), Q(\ell_1, \ell_2, \ell_3), R(), \ldots \}$

 \mathtt{acq}_{ℓ_1}

Tree specifications

We assume runs to be *fair*: If a process can execute a step infinitely many times, it eventually does. Deadlock \Leftrightarrow finite tree.

We label each node of the tree with the asymptotic behaviour of the locks associated with its variables in the subtree.

• $AG \neg \ell_i \rightarrow$ never taken in the subtree

- $AG \neg \ell_i \rightarrow$ never taken in the subtree
- $\blacktriangleright \ G \ \ell_i \rightarrow \text{never released}$

- $AG \neg \ell_i \rightarrow$ never taken in the subtree
- $G \ell_i \rightarrow$ never released
- $EFG \ell_i \rightarrow$ taken at some point and never released

- $AG \neg \ell_i \rightarrow$ never taken in the subtree
- $G \ell_i \rightarrow$ never released
- $EFG \ell_i \rightarrow$ taken at some point and never released
- $AFG \neg \ell_i \rightarrow$ held finitely many times

- $AG \neg \ell_i \rightarrow$ never taken in the subtree
- $\blacktriangleright \ G \ \ell_i \rightarrow \text{never released}$
- $EFG \ell_i \rightarrow$ taken at some point and never released
- $AFG \neg \ell_i \rightarrow$ held finitely many times
- ► $AGF \neg \ell_i \rightarrow$ always released but may be taken infinitely many times

We label each node of the tree with the asymptotic behaviour of the locks associated with its variables in the subtree.

- $AG \neg \ell_i \rightarrow$ never taken in the subtree
- $\blacktriangleright \ G \ \ell_i \rightarrow \text{never released}$
- $EFG \ell_i \rightarrow$ taken at some point and never released
- $AFG \neg \ell_i \rightarrow$ held finitely many times
- ► $AGF \neg \ell_i \rightarrow$ always released but may be taken infinitely many times

Lemma

Consistency of those labels can be checked by an exponential Büchi automaton.

We also label nodes with *local orders*.

 $\ell_1 \preceq \ell_2$ if ℓ_2 is taken after ℓ_1 was taken and never released.

Lemma

A tree is *schedulable* if it can be enriched with **consistent labels** and **consistent acyclic local orders**.

Result

Lemma

There exists an **exponential Büchi tree automaton** recognising realizable run trees of DLSS. It is **polynomial** if the number of locks is fixed.

Theorem

Model-checking DLSS against regular tree specifications is EXPTIME-complete.

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is Fixed-parameter tractable for right-resetting parity pushdown tree automata.

Theorem

Model-checking pushdown DLSS against regular tree specifications is EXPTIME-complete.

Add variables ?

 \rightarrow Easy VASS encoding

 \rightarrow Find good restrictions on variables to make the problem more tractable.

Thank you for your attention!